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Abstract

TRIAD is a well known simple algorithm that generates the attitude matrix between two coordinate
systems when the components of two abstract vectors are given in the two systems. TRIAD, however, is
sensitive to the order at which the algorithm handles the vectors, such that the resulting attitude
matrix is influenced more by the vector proccessed first.

In this work we present a new algorithm, which we call Optimized TRIAD, that blends, in a specified
manner, the two matrices generated by TRIAD when processing one vector first, and then when processing
the other vector first. On the average, Optimized TRIAD yields a matrix which is better than either one
of the two matrices in that it is the closest to the correct matrix. This result is demonstrated
through simulation.

I. BACKGROUND

When the components of two abstract vectors are given in two different coordinate systems, it is
possible to find the orientation difference between the two systems. In particular, we can easily find
the transformation matrix from one coordinate system to the other. TRIAD ™ is an algorithm that does
just that. The process of finding the matrix using TRIAD is as follows. Let w, and w, denote the column

matrices whose clements are, respectively, the components of the two abstract vectors when resolved in
body coordinates, and let \A and v s denote, respectively, the two column matrices whose elements are

the components of the abstract vectors when resolved in the other, usually reference, system. The
algorithm calls for the computation of the following column matrices in body coordinates:

r= w1/|wl| (1.a)
r,= (rlx wz)ll r X wzl (1.b)
r3= rlx r2 ) (1.c)
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and the following corresponding column matrices in the reference system:

= vl/|vl| (2.2)
,= (5% vz)/|slx v2| (2.b)
s3= slx s, .c)

Then the attitude matrix that transforms from body to the reference coordinate system is computed as
follows:

T T T
A= rl- sl + rz- s, + r3- s3 3)

where T denotes the transpose.

Following the process indicated in (1) and (2), we realize that the vector which is designated as
first, is normalized, but other than that, remains intact, whereas the other vector serves as a means
to define the second vector in the triad pair which determines the attitude. There is, therefore, an
uneven consideration of the two vectors where the first is given a preference in the determination of
A. We say that the first vector serves as an anchor in the computation of the transformation matrix. It
is, indeed, a good engincering practice to use the vector measured by the most accurate device as the
anchor vector. For example, it is very logical to use the vector measured by a star tracker as anchor
when the other vector is measured by magnetometers. One may wonder though whether this is the best one
can do. We maintain that we can do better, and propose a TRIAD-based algorithm which yields better
results. This algorithm, which we name Optimized TRIAD, is introduced next.

II. THE OPTIMIZED TRIAD

The accuracy of each vector-measuring device is quantified by the standard deviation of its error.
Accordingly, the vector measured by a star tracker is assigned a standard deviation smaller than that
assigned to a magnetometer, for example. Borrowing this notion, we assign a standard deviation to the
TRIAD-computed attitude matrix that corresponds to the standard deviation of the anchor vector used in
computing the matrix. Therefore, the attitude matrix Al, in whose computation vector no. 1 is used as

anchor, is assigned the standard deviation O which is the the standard deviation of vector no. 1.
Similarly, if vector no. 2 serves as anchor, we denote the computed attitude matrix by A2 and assign to
it the standard deviation o, which is the standard deviation of vector no. 2. Actually, since the
computation which yields the matrix is nonlinear and is based on both vectors, there is no simple

linear relation between the standard deviation of the anchor vector and that of the resulting matrix,
but since we are concerned only with the relative accuracy of A ) and Az’ the expression of their

accuracy by S, and o, respectively, fits well our final purpose.

It is well known (see the appendix) that when y | and y, are independent unbiased scalar measurement of
an unknown scalar, x, and their measurement errors have standard deviations o and S, respectively,

then X, the linear unbiased minimum variance estimate of x, is given by:

A
x=3 Wt 2 V2 @
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Following (4), we postulate that given Al with its assigned standard deviation o, and A2 with its
assigned standard deviation S,, We can find A’ , an estimate of A which is better than either Al or A2,

when using the estimator of (4); that is,
A= - A +—A &)

An interesting aspect of this estimator (as well as that of (4)) is the conclusion that adding some of
the worse result to the better, may yield an estimate whose accuracy is greater than that of the
better. Since A’ is a result of the addition of fructions of two orthogonal matrices, A is not
ncccssanly orthogonal, and thus is not a legitimate attitude matrix, unless it is orthogonalized.
Since A’ is close to being orthogonal, one orthogonalization cycle, as follows , suffices:

=05[A" + AHy (6)

It should be noted that the inversion of A' is an easy task since the inverse of a 3x3 matrix can be
computed analytically. It is cumbersome, if not impossible, to prove ana]yncally that A is better than
either A or A however, we can try to show it empirically. This is done in the next section.

III. ALGORITHM TESTING
II1.1 Static Testing

In the static testing we chose some fixed attitude matrix, Ame, and the compunents of the unit
vectors v and v, (two abstract vectors resolved in the reference system). Then Atxuc was used to
transform \A and v, 10 the body system. To each component of the latter we added white measurement
noise drawn from a random number generator. The added noise was unbiased and had a standard deviation

o= 0.1 for the noise added to the components of the transform of v and o,= 0.2 for the noise added to

2
was then applied to the four column matrices as described in the preceding section, once when vector
no. 1 was used as anchor and once when the other was used as anchor. Thxs generated the attitude
matrices A and A respectively, which then were used in (5) to generate A that was used in (6) to

the components of the transform of v, The noisy column matrices were designated as v and w_. TRIAD

yield the optumzed orthogonal matrix A. The quaternions corresponding to A"ue. Al, A2, and A were
computed and denoted by 9,00 9y 9 and i]\ respectively. The error quaternion of each transformation
was computed as follows:

_ -l
Sq=q®q__ ™

When q was q, we obtained 5q1, when q was q, we obtained 5q2, and when it was ﬁ\, we obtained SQ. (Note

that with the choice of (7) for computing the erroneous quaternion, we assume that 8q is the
transformation quaternion from the erroneous to the true coordinate system). Fmally, we extracted from
each 8q the corresponding rotation angle 8¢. We thus have expressed the error in the computation of the
attitude by a single angular error. That error was the angle by which the computed coordinate system
had to be rotated about the appropriate Euler axis in order to coincide with the true body coordinates.

Since 8¢ is a random variable, we ran 100 runs (realizations), each for 60 sec and each starting with a
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different seed. Along the time axis the computation was performed cvery second. We then averaged the
100 realizations at each time point and obtained the ensemble average of each error; that is, we

obtained:

100
— 1
5‘Pl(tk) = 100 jfl&Pl 'j(tk) (8.2)
_ 1 100
8‘Pz(tk) = T30 jfl&Pz'j(tk) (8.b)
100
A 1 A
8‘P(tk) =150 fl&Pj(tk) | (8.0

where j denotes the number of the realization, and t denotes the point in time where TRIAD and Optimal
TRIAD were performéd. The value of ﬁl(tk), 5$2(tk) and sé(:k) as function of t is presented in

Fig. (1). We see that 86 was always the smallest. We also computed the running time average of each
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Fig. 1: Ensemble Average of the Error Associated with Al. Az' and A.

ensemble average from the beginning of the run to time t In other words, we computed:

k
861 lv(tk) = + z 8$l(ti) G.a)
' i=1
- 1 k —
&Pz'"(tk) =01 8<p2(ti) (9.b)
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obvious from Fig. 2 that A is supérior to either Al or Az‘ In other words, on the average, the

Optimized TRIAD yields better results for the case tested.
II1.1 Dynamic Testing

To check the influence of changing attitude, we repeated the same runs and computations as described

before, for a changing A. The change in A was due to a the body rotation about an axis E defined as
follows:

= 1 T T T

p= F[lb: Jb, kb] (10)
The rotation rate about this axis was 1 rpm. The graphs of the results of this case, which correspondto
those presented in Figs. 1 and 2, are presented in Figs. 3 and 4 respectively. Since the idea behind
this algorithm is borrowed from linear estimation theory of independent unbiased measurement errors,
one would expect the ensemble average of the angular error to be zero; however, as can be seen in Figs.
1 and 3, this is not the case. This discrepancy stems from the fact that the displayed error is
not linearly related to the averaged matrices. Also, the errors in the computed matrices, A] and Az'

are not really independent.
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Finally, the vectors v, and Vo which are the components of the two abstract vector resolved in the

reference coordinates, were constant through all runs. The angle between the two vectors was close to
90 . To investigate the behavior of the algorithm for a different separation angle, we chose two new v,

¢
and v, vectors the angle between which was close 10 45 and ran the last test case. The results were

similar to those presented in Figs. 3 and 4, only that, as expected, the errors of all three algorithms
were nearly 25% higher.
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V. CONCLUSIONS

In this work we have presented a simple TRIAD-based algorithm, which we call Optimized TRIAD, that
performs better than TRIAD itself. The algorithm consists of runing TRIAD twice, once with one vector
as anchor and once with the other vector as anchor, and weight averaging of the two resultant matrices
followed by one orthogonalization cycle. The weights are determined by the accuracy of the measuring
devices that produced the vector measurements. The idea behind this algorithm is borrowed from linear
estimation theory of independent unbiased measurement errors. However, although the blending of the two
TRIAD-generated matrices is based on an unbiased minimum variance formula, the ensemble average of the
angular error is not zero, as can be seen in Figs. 1 and 3. This, however, is no surprise, because the
displayed error is not linearly related to the averaged matrices. Also, the errors in the computed
matrices, .A.l and Az' are not really independent.

We have shown empirically that, indeed, the accuracy of the Optimized TRIAD is better than that of
TRIAD even when the latter uses the vector measured most accurately as anchor. It should be noted
though that in this statement we refer to the average performance. That is to say that occationally
TRIAD may yield results which are better than those obtained using Optimized TRIAD, but on the average,
Optimal TRIAD performs better. It is interesting to note that like in Kalman filtering, the correct
blending of the better TRIAD-generated attitude matrix with the worse, yields, on the average, a result
which is more accurate than the better.

Appendix
Theorem: Given Y, and Y, where:
yEx+v, (lL.a)
Y= X+, (1.b)
and
E{vl] =0 (2a) E(v2} =0 (2¢)
) ) 2 2 E{vlvzl =0 (e)
E{vi}]=0" (2b) E{vi] = o] (24)
1 1 2 2
 Then, the fol_lowing linear estimator:
- - . 2 2
g g
A 2 1
J‘_&JZ-O-GZYI+0'2+C}'2y2 @
_ ‘ 1 2 1 2
yields an unbiased minimum variance estimate of x,
Proof:
A linear estimator of x has the form:
A
X = kly!+ k2y2 4
Substitution of (1) into (4) yields:
A
X=@&+kx+kyv+ky, )
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Using (5) we can write the estimation error as follos:

A

A
e=x-x=(1- kl- kz)x - klvl- k2v2 ©6)

Due to the unbiasedness of v, and v ) expressed in (2.a,c), we obtain from (6):
Ele} = (1 - kl- kz)x )]

For the estimate to be unbiased, E{e] has to vanish, which yields the necessary condition for
unbiasedness:

k1= 1- k2 (8)
Using (8), (4) becomes:
A
_x =(1-ky+ky, ©
and (6) becomes:
e=- klvl- kzv2 (10)
Now
Varle) = o7 8 gle? - E(e)?) an
which in view of the unbiasedness of e becomes:
o: = B(e}) (12)
Substitution of (10) into (12) yields:
2 22 22
ce = E{klvl + kzv2 + 2klk2vlv2] (13)
Using (2.b,d,e) and (8), (13) becomes:
2 2.2 2 2
o, = (A-k)yo + ko, (14)

We want the estimator to be of minimum variance. From (14) we see that we still hgve one more design
parameter to choose; namely kz' Consequently, we choose k2 so as to minimize c. Searching for the

minimum we differentiate (14) with respect to k ) and equate the result to zero. This yields:

d _ 2 2 _
d—kgof) = 201 - kot + %0 = 0 (15)
Consequently:
2
ol
k2= 2 2 (16.a)
. +0

It can be easily verified that the stationary point which 0: has at this kz' is a minimum point. Using
(16.a) in (8), we obtain:
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2
k1= - (16.b)
G +0
Substitution of (16) into (4) yields:
. 0’2 0’2
A 2 1
X=7 R Re) an
o +¢ g/ +o
Q.E.D,
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